Seeking gene relationships in gene expression data using support vector machine regression
نویسندگان
چکیده
منابع مشابه
Seeking gene relationships in gene expression data using support vector machine regression
Several genetic determinants responsible for individual variation in gene expression have been located using linkage and association analyses. These analyses have revealed regulatory relationships between genes. The heritability of expression variation as a quantitative phenotype reflects its underlying genetic architecture. Using support vector machine regression (SVMR) and gene ontological in...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملClassification of gene functions using support vector machine for time-course gene expression data
Since most biological systems are developmental and dynamic, time-course gene expression profiles provide an important characterization of gene functions. Assigning functions for genes with unknown functions based on time-course gene expressions is an important task in functional genomics. Recently, various methods have been proposed for the classification of gene functions based on time-course...
متن کاملApplication of Gene Expression Programming and Support Vector Regression models to Modeling and Prediction Monthly precipitation
Estimating and predicting precipitation and achieving its runoff play an important role to correct management and exploitation of basins, management of dams and reservoirs, minimizing the flood damages and droughts, and water resource management, so they are considered by hydrologists. The appropriate performance of intelligent models leads researchers to use them for predicting hydrological ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Proceedings
سال: 2007
ISSN: 1753-6561
DOI: 10.1186/1753-6561-1-s1-s51